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Impact of Intra-Flow Interference on the
Performance of 2D Multi-Hop Cooperative Network
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Abstract—A mathematical model is proposed to study the
effects of intra-flow interference caused due to multi-packet
propagation in a 2D cooperative opportunistic large array (OLA)
network. Specifically, the outage probability of node is derived
in the presence of interfering signals using the ratio distribution
of generalized integer gamma random variables. The outage
probability expression is used along with a Markov chain-based
transmission model to quantify the state distribution probabil-
ities, coverage of the network, and network throughput. The
results show that the network performance is highly dependent
on intra-flow interference especially at high signal-to-noise ratio
(SNR). Moreover, the coverage of network can be improved by
increasing SNR, array gain, and packet insertion rate.

I. INTRODUCTION

COOPERATIVE transmission (CT) has emerged as one of
the successful techniques in wireless communication to

overcome the effects of multipath fading by virtue of spatial
diversity. CT offers significant advantages over conventional
point-to-point communication that include energy-efficiency
[1] and range extension [2], thereby making it highly desirable
to be used in wireless sensor networks (WSNs). An effective
and low-complexity physical layer CT scheme is opportunistic
large array (OLA) where a group of radios opportunistically
take part in transmitting the same message to another group of
radios without any coordination within the group [3]. Since the
inter-nodal coordination is not desirable in low-energy WSNs,
OLA finds numerous applications pertaining to practical sce-
narios in WSNs such as structural health monitoring, vehicular
networks, and smart-grid communication.

One important factor that degrades the performance of OLA
networks is the intra-flow interference, i.e., the interference
caused by simultaneous transmissions of different packets over
different hops whereby all the transmissions use same channel.
The impact of intra-flow interference on the performance of
strip shaped OLA-based networks has been previously studied
in [4] in which authors have analyzed network outage under
continuum assumption that implies infinite node density (num-
ber of nodes per unit area) with a constant finite transmit power
per unit area. However, this assumption may not be valid for
finite density networks especially for the networks with low
node density such as the 2D OLA network studied in [5].
Similarly, [6] carries some resemblance with this manuscript,
where the interference effects in unicast barrage relay networks
are studied using the analytical framework built in [7].

In this paper, we aim to investigate the impacts of intra-
flow interference on the performance of a finite density OLA
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network. For this purpose, we consider a two dimensional (2D)
multihop OLA network with finite node density and mathe-
matically model the interference caused by different levels due
to multipacket transmissions at different hops. Specifically,
we model the desired signal power and interference power
appearing at a node as generalized integer gamma (GIG)
random variables (RVs) and derive a closed-form expression
of outage probability of a node using a ratio distribution. The
expression of outage can then used to derive the hop outage
and coverage probabilities as a function of node distribution,
average signal-to-noise ratio (SNR), path loss exponent, packet
insertion interval and interference tiers. The obtained results
show a significant coverage degradation due to intra-flow
interference. Moreover, a tradeoff is observed between the
network throughput and coverage.

II. SYSTEM MODEL

Consider a 2D network topology shown in Fig. 1, where
each level (or hop) consists of M nodes placed in a 2D
geometry of L⇥H nodes as a rectangular region. Each node is
a distance d apart from its adjacent node in both horizontal and
vertical dimension, while the interhop distance is kept M ⇥ d
to get a topology with non-overlapping hops. It is assumed
that the nodes are half-duplex and use decode-and-forward
(DF) mechanism for cooperative relaying. The nodes which
successfully decode the received signal relay it to next level’s
nodes, therefore, these nodes are referred to as DF nodes and
are shown as filled circles in Fig. 1. Hence the propagation of
the message from source to destination is accomplished using
cooperative multi-hop relaying. Furthermore, multiple packets
traverse the network simultaneously from same source, which
are denoted by ⇢m in Fig. 1, where m is the packet number
and m 2 Z+; Z+ is set of positive integers.

The source transmits a new packet after waiting R time
slots, where R 2 Z+. As multiple packets are transmitted
simultaneously, the interference is caused at each receiving
node. We denote the set of interfering levels whose trans-
missions create interference at the level n by In. Assum-
ing an extended 2D network, there exist infinite interfering
levels, however, the interfering levels with appreciable level
of average interference power are finite because the average
interference power from interfering levels with large distance
from the receiving level is negligible due to their huge path
loss. Therefore, we only consider the interfering levels within
T tiers of desired level, where T 2 Z+. It should be noted that
the all active (transmitting) levels are considered interfering for
a receiving hop except its desired level. The active levels with
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Fig. 1: The network topology for M = 4, L = H = 2, R = 1, and T = 1, 2.

respect to nth receiving level is given by n � 1 + (R + 1)i,
i 2 {0,±1,±2, . . .}. An interference scenario for R = 1 is
illustrated for a single node of level n in Fig. 1. The solid
lines from DF nodes of level n� 1 denote the desired signal,
whereas the dotted lines from the DF nodes of level n + 1 ,
n� 3, and n+3 show the interfering signals. The first tier of
interference includes the interfering levels enclosed by inner
unfilled ellipse, whereas second tier of interference includes
outer filled ellipse. Thus, for T = 1, In = {n + 1}, and for
T = 2, In = {n� 3, n+ 1, n+ 3}.

III. OUTAGE PROBABILITY

Assuming equal transmit power for each node, the signal-
to-interference-plus-noise ratio (SINR) of pth node at level n
is given as

�(n)p =

P
q2Nn�1

gp,qkxp � xqk��

P
l2In

P
k2Nl

gp,kkxp � xkk��
+�̄�1

, (1)

where Nl represents the set of DF nodes at level l. The symbol
gk,j denotes the channel gain from node k to node j, while
xj denotes the coordinates of node j in Euclidean geometry,
where k·k is Euclidean norm. Assuming Rayleigh flat fading
channel, the channel gains follow exponential distribution
with unit mean. The �̄ = P/N0, where P is the transmit
power and N0 is the one-sided power spectral density of the
additive white Gaussian noise (AWGN), and � denotes the
path loss exponent. It can be noticed that the numerator and
the denominator in (1) contain the sum of exponential RVs.
In the following lemma, the PDF of the sum of exponential
RVs will be provided.

Lemma 1. Let RV Z :=

PN
i=1 Xi, where Xi, 8i are

independent non-identically distributed (i.n.i.d) Erlang RVs1

with respective rate and shape parameter �i and ki such that
�i 6= �j , for i 6= j, 8i, j = 1, 2, . . . , N . The RV Z then
follows a generalized integer gamma (GIG) distribution and
has following PDF
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where � = [�1,�2, · · · ,�N ], K = [k1, k2, · · · , kN ] and u(x)
is unit step function.

1Note that each Erlang RV is a sum of independent exponential RVs with
same parameter �, i.e., Xi =

Pki
j=1 Yj , where Yj ⇠ Exp(�i), 8j.

Using Lemma 1, we denote (1) as �
(n)
p = S/(I + �̄�1

).
The RVs S ⇠ GIG(K,⌘) and I ⇠ GIG(N,⌫),
where K = [k1, k2, · · · , kNS ], N = [n1, n2, · · · , nNI ],
⌘ = [⌘1, ⌘2, · · · , ⌘NS ], and ⌫ = [⌫1, ⌫2, · · · , ⌫NI ]. It should be
noticed that ki denotes the number of exponential RVs of ith
group in sum S having same rate parameter ⌘i, which is the
path loss (i.e., distance raised to power �). Similarly, ni is the
number of exponential RVs of ith group in sum I having same
rate parameter ⌫i. The NS and NI denote the total number of
Erlang RVs with distinct rate parameter whose sum yield S
and I , respectively. We now consider following theorem.

Theorem 1. The success probability of the receiving node p
at level n is given as
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where  (., ., .) is Kummer’s confluent hypergeometric function
and ⌧ is the modulation dependent SINR decoding threshold.
The ✓ij = ↵ij(K,⌘, NS), and �`m = ↵`m(N,⌫, NI).

Proof. The success probability of node p at level n is defined
as  (n)

p = P
⇣
�
(n)
p > ⌧
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⇣
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. We get following
equation after some mathematical manipulations
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where fS(x) = fZ(x,K,⌘) and fI(y) = fZ(y,N,⌫). By
substituting expression of fS(x) in (3), we get
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After solving the integral involving variable x in above equa-
tion, and substituting fI(y), we get
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After solving the integral above, expression of success proba-
bility is obtained, which is given in (2). ⌅

For high SINR case (i.e., �̄ !1), the success probability
is simply given by complementary cumulative density function
(CCDF) of ratio of GIG RVs S and I , i.e.,  (n)

p = P
�
S
I > ⌧

�
.

Therefore, success probability for high SINR case is given as
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It should be noted that the outage probability is simply given
as �(n)

p = 1� (n)
p . In the sequel, we will use the expression

of the success probability to find the hop outage probability.

Algorithm 1 Recursive Solver

1: Initialize i = 0, Q(0)
n = 0, ⇡(0)

m (0) = 1/(2M � 1), and
⇡
(0)
m (n) = 0, 8n = 1, 2, · · · , H , 8m 2 X

2: i i+ 1

3: for each hop n do
4: Find Q(i)

n from (5) using ⇡(i�1)
m (`), ` 2 In

5: Update ⇡(i)
m (n) using (6)

6: end for
7: if kQ(i)

n �Q(i�1)
n kF ✏, 8n then

8: Stop iteration
9: else

10: Go to step 2
11: end if

IV. THE MARKOV MODEL

In this section, we present a mathematical model based upon
discrete-time Markov chain to study the multi-hop transmis-
sions in the OLA network.

The state of the node k at level n is denoted by a binary
indicator function I(n)

k , which is 1 if kth node is DF, and is
0 otherwise.

The state of level n can be represented as
Sn = [I(n)

1 , I(n)
2 , · · · , I(n)

M ], where Sn 2 S; and S = {0}[X .
The X is a finite transient irreducible state space encompassing
all the transient states, i.e., the states in which at least one
node is DF. The symbol 0 denotes the absorbing state, i.e.,
the state in which all nodes of a level fail to decode. Ignoring
transitions to/from the absorbing state, we can have transition
probability matrix Q, which has elements given as

qij =
X

s2In

Y

`2In
m=s`

⇡m(`)pij|s, (5)

where In is state space containing all possible permutations
of states of interfering levels and ⇡m(`) is the probability
that interfering level ` is in state m; m 2 S . The prob-
ability of absorbing state in terms of transient state proba-
bilities is given as ⇡0(n) = 1 �

P
j2X ⇡j(n). The symbol

pij|s represents the transition probability from the state i
to state j given the interfering state is s, where s 2 In

and pij|s =
Q

p2N(j)
n
 

(n)
p|i,s

Q
q2N̄(j)

n
(1� (n)

q|i,s). The symbols
N(j)

n and ¯N(j)
n represent the set of DF and non-DF nodes,

respectively, corresponding to state j at level n. The symbol
 

(n)
p|i,s denotes the success probability of pth node at level n

given desired state is i and interfering state is s. Using (5),
state distribution probabilities of level n are given as

⇡j(n) =
X

i2X
⇡i(n� 1)qij , (6)

where j 2 X . It can be noticed from (6) that the value of
⇡m(`), m 2 S, ` 2 In, should be known to evaluate value
of ⇡j(n). Unfortunately, a direct solution to (6) is prohibitive;

therefore, we propose a recursive algorithm for solving (6),
which is given in Algorithm I. The symbol k·kF represents
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Fig. 2: The average success probability versus ⌧ for different tiers of
interference and �̄; M = 3, L = 1, H = 3, d = 1m, R = 1, and � = 2.

the Frobenius norm operator, H is maximum number of hops,
and ✏ is a given tolerance.

V. RESULTS AND PERFORMANCE ANALYSIS

In this section, we analyze the performance of the finite
density OLA networks with multi-packet insertion for various
network parameters.

In Fig. 2, we compare the results of the average success
probability at one hop for different values of T and �̄. For
the results shown, we assume all the nodes of the interfering
as well as desired levels are DF. The analytical results shown
in the figure are obtained by using (2) and (4) for finite and
infinitely large �̄, respectively. It can be noticed that analytical
and simulation results match closely, thereby validating Theo-
rem 1. It is evident from the figure that the success probability
has an inverse monotonic relation with the ⌧ . Moreover, if
we compare the curves corresponding to different T and �̄,
we can see that a higher value of �̄ corresponds to a larger
reduction in the success probability as we increase the tiers
of interference T . This is because interference from distant
levels becomes more significant at higher �̄. Furthermore, we
see a saturation trend as we increase the value of T from 1 to
3, i.e., the reduction in success probability is more significant
from T = 1 to T = 2 than from T = 2 to T = 3. Therefore,
one can limit the tiers of interference to a finite value while
doing outage analysis of such OLA network.

In Fig. 3, the results of average outage probability against
SNR �̄ are depicted for different values of M and �. we
see that at lower values of SNR, the network with lower M
performs better because of reverse diversity effect, i.e., for low
SNR, a smaller number of cooperating nodes, M , provides a
lower outage probability, and vice versa. This is because for
higher M , the low SNR cannot overcome the huge average
path loss that exists between the transmitting and receiving
nodes. Also, the path loss disparity is increased for higher
M , which introduces an SNR penalty. However, for high SNR
regime, the role of spatial diversity is evident for higher values
of M . For instance, at �̄ = 15dB and � = 2, we can see 83%
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and 77% decrease in outage as we increase M from 3 to 6 and
6 to 9, respectively. Similarly, the effect of � is interesting,
i.e., if we compare two curves corresponding to M = 9, we
can see that to have a 10% outage for � = 3, we need an
extra SNR margin of 10dB compared to � = 2 case.

The hop outage ⇡0(m), i.e., the probability of a hop being in
an absorbing state, is depicted in Fig. 4 against the hop number
m and for different values of R and M . We notice that the
simulation and analytical results match closely, thereby verify-
ing our Markov chain-based transmission model. It is worth-
mentioning that Algorithm 1 converges after finite number of
iterations, e.g., for M = 4 and R = 1, the algorithm converges
in 23 iterations for ✏ = 10

�10. It can also be observed that
for a constant value of R, the hop outage is lower for higher
values of M because of the spatial multiplexing and array
gain. Moreover, the slope of the curves is seen to become
smaller by increasing M indicating a slight degradation in
the performance as the packets traverse the network. Also,
the network with a higher value of R performs significantly
better because the interfering levels are located farther from
the receiving level for a higher value of R and offer larger
path loss to desired level. However, the transmission rate also
gets reduced by increasing R because of more idle slots.

In Fig. 5, the results of coverage distance against a required
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Fig. 5: The coverage distance versus required hop outage for different values
of M , L, and H; d = 1m, T = 1, R = 1, ⌧ = 0.2, ✏ = 10�10, and � = 2.

quality of service (QoS) are depicted for different values of M .
The QoS is defined as the maximum value of the probability of
hop outage. In other words, we require that the probability of a
hop being in an absorbing state should be less than or equal to
the required QoS. The total transmission power per hop is kept
constant for all values of M for a fair comparison. It is evident
in the figure that the coverage distance increases monotonically
by increasing the required hop outage. The effects of spatial
multiplexing is evident in Fig. 5, where coverage improves as
M increases. Similarly, in the right half of Fig. 5, coverage
distance versus QoS for different network topologies is plotted
by varying values of L and H for a constant M . As we
increase the value of L, the coverage distance is reduced
because of higher average path loss for a large value of L.
However, there is a trade-off between the latency of a network
and transmission reliability, i.e., a large value of L corresponds
to a bigger hop and thus a destination is reached using lesser
number of hops. However, the average path loss of the system
is large. On the other hand, a smaller value of L provides better
reliability per hop, however, the latency of network increases
as shorter hops will be made.
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